Reproductive Cycle of Quadrula metanevra
(Bivalvia: Unionidae) in the Pickwick Dam Tailwater of the Tennessee River

J. T. GARNER
Alabama Game and Fish Division, P.O. Box 366, Decatur 35602

T. M. HAGGERTY
Department of Biology, University of North Alabama, Florence 35632

AND

R. F. MODLIN
Department of Biological Sciences, University of Alabama in Huntsville, Huntsville 35899

ABSTRACT.—Quadrula metanevra were collected monthly from Pickwick Dam tailwater (Tennessee River mile 201.3), Tennessee, between July 1988 and June 1990. A total of 227 specimens were examined. The population consisted primarily of dioecious individuals (98%) and had an unequal sex ratio (1.5 female: 1 male). Histological examinations showed that typical spermatogenesis began in autumn (September), increased in spring (March–April), and continued until midsummer (July). Atypical spermatogenesis predominated during July and August, and may have increased the number of sperm produced in autumn and winter. Oogenesis followed a pattern similar to that of typical spermatogenesis, with smallest average oocyte size observed in August. Gamete release occurred between late winter-early spring (March) and midsummer (July). Brooding females were found between late March and July.

INTRODUCTION

Basic knowledge of the reproductive biology of a species is fundamental to understanding its life history. Generalities of reproduction in the Unionidae (Bivalvia: Unionoida) have been understood since the late 19th and early 20th centuries (Sterki, 1898; Lefevre and Curtis, 1910; Coker et al., 1921). Tachyticic species are short-term brooders that retain glochidia (i.e., larvae) for a relatively short period (e.g., 3–6 wk, Gordon and Layzer, 1989, but see Weaver et al., 1991). Brachyticic species are long-term brooders that hold their glochidia for an extended period, typically from fall until the following spring and summer (but see Sterki, 1898; Zale and Neves, 1982a, b).

Although most unionids have been classified as either tachyticic or brachyticic, other aspects of their reproductive biology (e.g., gametogenic cycle and period of fertilization) are not well known (Zale and Neves, 1982a, b; Gordon and Layzer, 1989). Further, recent investigations indicate that not all species of unionids can be clearly classified as tachyticic or brachyticic (Heard, 1975; Smith, 1978; Gordon and Layzer, 1989; Gordon and Smith, 1990; Woody and Holland-Bartels, 1998) and that intraspecific differences may exist among populations (van der Schalie, 1970; Lewis, 1985).

The objectives of this research were to quantify the periods of gametogenesis, gamete release and brooding activity over a 24-mo period in a population of Quadrula metanevra (Unionidae). Quadrula metanevra is found from the northern portions of the Mississippi drainage S to the Tennessee, Arkansas (Burch, 1973), and Alabama rivers (J.T.G., pers. obs.). Although it is relatively common throughout much of its range, no detailed study of
its reproductive habits has been published. Additionally, quantitative assessments of unionid reproductive biology are few and in-depth analyses should help determine the ultimate causations of life history traits in the Unionidae. *Quadrula metanevra* is commercially harvested and information concerning its reproductive biology is also of value to resource managers.

STUDY AREA

Specimens were collected from the Tennessee River between river miles (TRM) 200.0 and 201.3 (88°18′N, 35°06′W) in Hardin County, Tennessee, just downstream of Pickwick Dam (TRM 206.7). At the study site the river was approximately 0.6 km wide. Specimens were collected at depths from 4.5–9.0 m and the current velocity was highly variable depending on discharge from Pickwick Dam. Substratum consisted primarily of gravel, with some sandy areas.

MATERIALS AND METHODS

Specimens were collected by hand using SCUBA, approximately monthly between 28 July 1988 and 17 June 1990 (24 mo). Weather and flood conditions prevented sample collection during some months (see Fig. 1). A sample consisted of the first 15 individuals that were encountered per sample date. All specimens were ≥50 mm in length. Samples were transported to the University of North Alabama laboratory alive in insulated containers of river water.

Soft tissues were cut from the shells and fixed in 10% formalin. Transverse sections of the visceral mass were paraffin-sectioned (6 μm), mounted on glass slides and stained with hematoxylin and eosin using methods described in Humason (1979).

Cell quantification methods were similar to those of Jones et al. (1986) and Haggerty et al. (1995). For spermatogenesis, cells were identified and counted if they touched the X axis of an eyepiece reticle that was moved across the approximate center of 10 acini (i.e., epithelial sacs within the visceral mass where gametogenesis occurs) per male specimen using a light microscope and 1000× magnification. Five males were randomly selected and evaluated per sample date. Cells were identified as spermatagonia/spermatocytes, spermatids, spermatozoa and multinucleated inclusions based on size, shape, intensity of staining and position in the acinus. Multinucleated inclusions (i.e., sperm morulae) consist of 1–8 masses of decondensed DNA surrounded by a thin layer of cytoplasm (Kotila, 1989). They differentiate into spermatozoa (i.e., atypical spermatogenesis) that are indistinguishable from those produced by typical spermatogenesis (i.e., those differentiating from spermatids). Descriptions in Dinaumani (1974) and Pereda and Parada (1984) helped with identification of male germ cells.

Oogenesis, formation and maturation of ova, was quantified by measuring the diameters of oocytes along a transect across the entire section of gonad. Fifty oocytes in each of five randomly selected specimens were measured. Only those oocytes in which the plane of the section passed through the nucleus were measured. A ruled eyepiece reticle was used for measurement. Transects were run along the Y axis of the reticule cross hairs. A transect was defined as the width equal to 10 units of measure on each side of the Y axis. Any oocyte falling totally or partially within the transect was measured along its longest axis.

To determine brooding period, gills were grossly examined for presence of glochidia or embryos. In 1989, we were not able to quantify the percentage of gravid females because they aborted conglutinates (i.e., packets of glochidia) during transfer from river to laboratory. In 1990, three-prong clamps were used to hold valves of collected mussels together to prevent abortion of embryos and larvae. Only 1990 brooding results are presented.
Temporal effects on spermatogenesis and oogenesis were analyzed by one-way ANOVAs (SAS Institute Inc., 1982). Duncan’s multiple-range test was used to compare means. Results were termed significant only if $P < 0.05$.

RESULTS

Sex ratio and hermaphroditism.—Of 227 *Quadrula metanevra* examined during this study, 58% were females, 40% were males and four individuals (2%) were monoecious, giving a sex ratio of 1:5:1 (female to male). This was significantly different from a 1:1 sex ratio (χ^2 Goodness-of-fit test, $P < 0.05$). Gonads of the hermaphrodites consisted primarily of male tissue, with small numbers of female acini per section.

Spermatogenesis.—Spermatogenesis followed the same basic pattern over both years (Fig. 1) and significant differences among collection dates were found for all cell types ($P < 0.0001$). During late summer and early autumn, multinucleated inclusions dominated the acini (Fig. 1a). In September and October, onset of typical spermatogenesis was indicated by a significant increase in spermatogonia/spermatocytes (e.g., August 1989 compared to...
September 1989, Fig. 1b). Spermatids also appeared at this time (Fig. 1c). These cells formed a thick band around the periphery of each acinus and spermatozoa began to accumulate in the lumina of acini (Fig. 1b–d). This was accompanied by a decrease in multinucleated inclusions (Fig. 1a). By November, the decrease in multinucleated inclusions was significant (e.g., July 1988 compared to November 1988). Also in November, numbers of spermatozoa had increased significantly compared to July and August (e.g., July and August 1989 compared to November 1989). Numbers of spermatogonia/spermatocytes and spermatids were significantly lower in winter, as compared to autumn (e.g., September 1988 compared to January 1989, Fig. 1b–c), due to their differentiation into spermatozoa, which significantly increased (Fig. 1d). A significant decrease in spermatozoa numbers was observed between winter and spring (e.g., January 1989 compared to May 1989, Fig. 1d). As acini began to empty of spermatozoa produced during autumn and early winter, typical spermatogenesis increased. This was marked by a significant increase in spermatogonia/spermatocytes and spermatids (e.g., January 1989 compared to May 1989, Fig. 1b–c) to levels similar to those seen in autumn. Gametogenic activity continued until July, as indicated by the presence of spermatogonia/spermatocytes and spermatids (Fig. 1b–c). However, spermatozoa accumulated only during autumn (Fig. 1d). Also, total cell count significantly decreased from January through July (e.g., January 1989 compared to July 1989, Fig. 1e). These two factors suggest that spermatozoa were released as they were produced during spring and summer. In July, multinucleated inclusions again became the dominant cell type.

Oogenesis.—Oogenesis occurred throughout most of the year and the annual cycle differed little between years (Fig. 1f). Size of oocytes differed significantly among collection dates (F = 15.3, df = 17, P < 0.0001). During late summer (i.e., July or August) developing oocytes were at their smallest size (Fig. 1f). Oocyte size increased significantly during the autumn (e.g., August 1989 compared to October 1989, Fig. 1f). Oocytes emerged from the acinus walls attached to cytoplasmic stalks. As oocytes grew, they eventually broke away from the acinus wall. During the early stages of oogenesis, small, spherical structures were present in the gonadal tissues. These structures disappeared as oocyte size increased which suggested a nutritive function. Oocyte size decreased significantly between spring and late summer (e.g., April 1989 compared to August 1989, Fig. 1f).

Brooding.—During 1990, embryos and mature glochidia were found in marsupia from late March through July. Marsupia were located in both inner and outer gills. The percentages of females with embryos and/or glochidia in marsupia were: March—67% (4/6), April—58% (11/19), May—53% (16/30), June—53% (9/17) and July—14% (1/7).

Discussion

Sexuality and sex ratio.—In the study population, 2% of the typically dioecious Quadrula metanevra was hermaphroditic. These results are similar to those found for other populations of dioecious unionids (Heard, 1979, but see Downing et al., 1989). Studies have shown both male-biased (Yokley, 1972) and female-biased (Dudgeon and Morton, 1983) sex ratios in unionids.

Gametogenesis.—Typical spermatogenesis and oogenesis began in autumn and continued until midsummer (Fig. 1b–f). A possible benefit of starting gamete production in autumn is that it allows individuals to take advantage of high nutrient resources that may be available during that period. The Tennessee Valley Authority (1974) found elevated chlorophyll levels in Kentucky Reservoir during autumn. By starting gamete production at that time, excess food resources can be channeled toward gamete production. An early start in gametogenesis may be critical to insure that a sufficient number of spermatozoa are released in the spring, when water levels are often high and the chances of fertilization reduced due to sperm
dilution and increases in the flow rate (Haggerty et al., 1995). Gamete release in the spring may be important with regard to fish host relationships (see below). Some females in our study had embryos in different stages of development, which may indicate a low fertilization rate (Matteson, 1948; Gordon and Smith, 1990). This condition has been observed in females of other tachytic species (Lefevre and Curtis, 1910; Matteson, 1948; Yokley, 1972; Yeager and Neves, 1986). Population demographic studies show that annual recruitment varies greatly (Miller and Payne, 1988; Payne and Miller, 1989). Such variation might indicate that some years may have lower fertilization rates than others.

A proportion of the initial accumulation of spermatozoa in the autumn may have resulted from the differentiation of multinucleated inclusions (Heard, 1975; Kotrla, 1989; pers. obs.). However, the significance of gamete production by ameiotic means remains unclear (Heard, 1975).

Gamete release.—Based on a drop in the number of spermatozoa, a decline in egg size, and the presence of eggs and glochidia in the marsupia, the gamete release period in the study population extended from at least March through July (Fig. 1). A proximate cause of gamete release may be water temperature (Yokley, 1972). Cyclonaias tuberculata, a sympatric, short-term brooder, releases gametes during the same period (Haggerty et al., 1995). This species' gametogenic cycle was quantified in a similar way. Qualitative studies of tachytic species indicate that lengths of gamete release periods vary (Yokley, 1972; Yeager and Neves, 1986; Weaver et al., 1991; Jirka and Neves, 1992).

The failure to find individuals in various stages of gamete release (e.g., spent individuals and very ripe individuals) for the spring and early summer collection dates suggests a lengthy gamete release in all individuals, rather than an asynchronous gamete release among individuals. The possible cost of a lengthy gamete release period in Quadrula metanervra is that a considerable amount of energy is used to make gametes. The benefit, however, is a longer annual period to produce offspring. Again, this behavior may be advantageous when gamete release occurs in the spring and early summer when water conditions are often varied. A shorter period in the spring or early summer could mean that all of an individual's gametes would be released at a time when water levels and/or flow rates may not favor fertilization.

An additional advantage of late winter to midsummer gamete release is that it allows a shorter brooding period. Glochidia of species that release gametes from late winter through midsummer mature in time to be discharged during the same year, with a likelihood of fish host infestation that is still relatively high (see below). Females that release gametes late in the summer (i.e., bradytic brooders) usually retain their glochidia until the following spring. These females must survive the autumn and winter before they are able to release their progeny.

Brooding and glochidia release.—The individuals of our study had a tachytic brooder reproductive pattern that is in accord with the results of Lefevre and Curtis (1910) and Utterback (1915). Like most other tachytic and many bradytic brooders (Lefevre and Curtis, 1910, but see, Sterki, 1898; Neves and Widlak, 1988; Woody and Holland-Bartels, 1993). Quadrula metanervra were gravid during the spring and early summer months. Glochidial release during this period is not surprising since its reported fish hosts (i.e., Lepomis cyanellus, L. macrochirus and Stizostedion canadense, Gordon and Layzer, 1989) are migrating to breeding grounds, actively feeding, building nests and spawning at this time (Etner and Starnes, 1993). It is assumed that discharge of glochidia at this time of host fish activity optimizes reproductive success and offspring dispersal. Although it is unclear how glochidia are discharged by female Q. metanervra, they do produce conglutinates (Lefevre and Curtis,
1910; pers. obs.) that may attract the host fish (Chamberlain, 1934; Kat, 1984, Jones et al., 1986) and increase the potential of host infestation (Neves and Widlak, 1988).

Acknowledgments.—We thank P. Yokley for his encouragement and support, and A. Gooch and Z. Bowen for their assistance in collecting specimens. P. Kittle, T. Richardson and two anonymous reviewers improved the manuscript. The University of Alabama in Huntsville and the University of North Alabama provided equipment and library assistance.

LITERATURE CITED

Submitted 29 September 1997

Accepted 10 August 1998