Terminology and Notation.

- 1. Read Chapter 3, Terminology and Notation.
- 2. What is the difference between a finite group and an infinite group?
- 3. Write the definition of the order of a group.
- 4. What is the order of the group \mathbb{R}^* , the nonzero real numbers under multiplication? What is the order of the group U(18)?
- 5. Write the definition of the order of an element in a group.
- 6. Study the computations in Examples 1, 2, and 3.
- 7. Do Exercise 1.
- 8. Write the definition of a *subgroup* of a group.
- 9. It's worth noting here that since the definition of a group implies the existence of an identity element, a group can never be empty. In particular, subgroups of groups are never empty.
- 10. Is $\operatorname{GL}(2,\mathbb{Q})$ a subgroup of $\operatorname{GL}(2,\mathbb{R})$? Is the group \mathbb{Z}_n under addition modulo n a subgroup of \mathbb{Z} under addition?
- 11. What is a *proper* subgroup of a group? What is the *trivial* subgroup?
- 12. What notation is used to mean that H is a subgroup of G? Is there a special notation used when H is proper subgroup of G?
- 13. Let $H \leq G$. Prove that the identity of H is equal to the identity of G. (Hint: Show that the identity of G is an element of H, then use uniqueness of the identity.)
- 14. Do Exercise 4. You may find the following steps helpful.
 - (a) Let $a \in G$. Let |a| = n and $|a^{-1}| = k$. For now, assume that n and k are finite.
 - (b) Show that $k \leq n$ by computing $(a^{-1})^n$.
 - (c) In the same spirit, show that $n \leq k$ by computing a^k . It may help to notice that $a = (a^{-1})^{-1}$.
 - (d) What do the results of (a) and (b) imply about |a| and $|a^{-1}|$?
 - (e) Does the result Exercise 4 still hold if a has infinite order?