6.16 If a group G is isomorphic to H, prove that $\operatorname{Aut}(G)$ is isomorphic to $\operatorname{Aut}(H)$.

Hints: We are given that G is isomorphic to H, so there exists an isomorphism from G onto H. Hence, there is a function $\phi: G \rightarrow H$ which is one-to-one, onto, and operation-preserving. We need to show that $\operatorname{Aut}(G)$ is isomorphic to $\operatorname{Aut}(H)$. Hence, we must exhibit an isomorphism $\Gamma: \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(H)$ which is one-to-one, onto, and operation-preserving. (Note that Γ is the capital Greek letter pronounced "Gamma.") To find Γ, we must find a way to take any automorphism $\alpha: G \rightarrow G$ of G, and construct an automorphism $\Gamma(\alpha): H \rightarrow H$ of H.

To construct Γ, let $\alpha \in \operatorname{Aut}(G)$ and consider the function $\phi \alpha \phi^{-1}$ (recall that the juxtaposition of functions means to compose them from right to left). Since $\phi^{-1}: H \rightarrow G, \alpha: G \rightarrow G$, and $\phi: G \rightarrow H$, the function $\phi \alpha \phi^{-1}$ is a function from H to H. We claim that $\phi \alpha \phi^{-1}$ is an automorphism of H (that is, you need to prove that $\phi \alpha \phi^{-1}$ is one-to-one, onto, and operation-preserving). Then, we may now define a mapping $\Gamma: \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(H)$ by $\Gamma(\alpha)=\phi \alpha \phi^{-1}$. There are several steps which remain to show that Γ is an isomorphism:

- Γ is one-to-one. Suppose $\alpha_{1}, \alpha_{2} \in \operatorname{Aut}(G)$ and $\Gamma\left(\alpha_{1}\right)=\Gamma\left(\alpha_{2}\right)$. Prove that $\alpha_{1}=\alpha_{2}$. This step will use the fact that, since ϕ is one-to-one and onto, $\phi \phi^{-1}$ is the identity function on H, and $\phi^{-1} \phi$ is the identity function on G.
- Γ is onto. Let $\beta \in \operatorname{Aut}(H)$. To show that Γ is onto, we must exhibit an automorphism $\alpha \in \operatorname{Aut}(G)$ such that $\Gamma(\alpha)=\beta$. Once you have found the desired function $\alpha: G \rightarrow G$, don't forget to prove that α is an automorphism of G.
- Γ is operation-preserving. Let $\alpha_{1}, \alpha_{2} \in \operatorname{Aut}(G)$. We must prove that $\Gamma\left(\alpha_{1} \alpha_{2}\right)=\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)$, where we recall that the group operation in $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$ is function composition. To prove this, simply use the definition of Γ :

$$
\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)=\left(\phi \alpha_{1} \phi^{-1}\right)\left(\phi \alpha_{2} \phi^{-1}\right)=\cdots=\Gamma\left(\alpha_{1} \alpha_{2}\right)
$$

