MA 437 Exam 1 Solutions

Name:

By writing my name, I attest that I will adhere to the honor code.

Read all of the following information before starting the exam:

- All solutions must be explained completely in order to earn full credit.
- This test has 4 problems and is worth 50 points. It is your responsibility to make sure that you have all of the pages!
- Since time is limited, it is crucial that you think before you write.
- Be sure to use proper mathematical notation. Incorrect or improvised notation will result in a loss of points.
- You may use (within reason) any results from class or the textbook, as long as you make it clear that you are doing so.
- Good luck!

1. Let \mathbb{Z} be the set of integers. Define a relation \sim on \mathbb{Z} as follows: $a \sim b$ if and only if $a^{2}=b^{2}$.
(a) Prove that \sim is an equivalence relation.

Solution: To show that \sim is an equivalence relation, we must show that \sim is reflexive, symmetric, and transitive on \mathbb{Z}.

- For all $a \in \mathbb{Z}, a^{2}=a^{2}$. It follows that $a \sim a$ for all $a \in \mathbb{Z}$. Thus, \sim is reflexive.
- Suppose $a \sim b$. Then $a^{2}=b^{2}$. By symmetry of equality, $b^{2}=a^{2}$. Hence, $b \sim a$. So \sim is symmetric.
- Suppose $a \sim b$ and $b \sim c$. Then $a^{2}=b^{2}$ and $b^{2}=c^{2}$. By transitivity of equality, $a^{2}=c^{2}$. Thus, $a \sim c$, so \sim is transitive.
(b) Calculate $[0]$, the equivalence class containing 0.

Solution: Let $x \in \mathbb{Z}$ such that $x \sim 0$. Then $x^{2}=0^{2}$, and hence $x=0$. On the other hand, if $x=0$, then $x \sim 0$, so [0], which is defined as the set of all integers which are related to 0 under \sim, is equal to the set $\{0\}$.
(c) Calculate [4], the equivalence class containing 4.

Solution: Let $x \in \mathbb{Z}$ such that $x \sim 4$. Then $x^{2}=4^{2}$, and hence $x= \pm 4$. On the other hand, if $x= \pm 4$, then $x \sim 4$, so $[4]=\{4,-4\}$.
2. Suppose that n is an integer which is not divisible by 5 . Prove that $n^{4} \bmod 5=1$.
(Hint: What could $n \bmod 5$ be?)
Solution: Since $5 \nmid n, n \bmod 5 \neq 0$. It follows that $n \bmod 5=1,2,3$, or 4 . We proceed by cases.

- Case 1. If $n \bmod 5=1$, then

$$
n^{4} \bmod 5=1^{4} \bmod 5=1 \bmod 5=1 .
$$

- Case 2. If $n \bmod 5=2$, then

$$
n^{4} \bmod 5=2^{4} \bmod 5=16 \bmod 5=1 .
$$

- Case 3. If $n \bmod 5=3$, then

$$
n^{4} \bmod 5=3^{4} \bmod 5=81 \bmod 5=1 .
$$

- Case 4. If $n \bmod 5=4$, then

$$
n^{4} \bmod 5=4^{4} \bmod 5=256 \bmod 5=1
$$

Since $n^{4} \bmod 5=1$ in all possible cases, the desired result follows.
Remark: If you want some extra practice, try the following similar exercises:
(a) Prove that if n is an integer which is not divisible by 7 , then $n^{6} \bmod 7=1$.
(b) Prove that if n is an odd integer which is not divisible by 5 , then the last digit of n^{4} is 1 .
3. For a positive integer n, let $U(n)=\{x \in \mathbb{Z} \mid 0<x<n$ and $\operatorname{gcd}(x, n)=1\}$. Recall that $U(n)$ is a group under multiplication $\bmod n$.

For p a prime, let $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ and

$$
\mathrm{GL}\left(2, \mathbb{Z}_{p}\right)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}_{p} \text { and }(a d-b c) \bmod p \neq 0\right\}
$$

Recall that $\mathrm{GL}\left(2, \mathbb{Z}_{p}\right)$ is a group under matrix multiplication $\bmod p$.
(a) Find the inverse of 2 in the group $U(5)$.

Solution: Since $2 \cdot 3 \bmod 5=6 \bmod 5=1$, which is the identity in $U(5)$, the inverse of 2 in $U(5)$ is 3.
(b) Find the inverse of $\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right]$ in the group $\operatorname{GL}\left(2, \mathbb{Z}_{5}\right)$. Be sure to check that your calculation is correct. Solution: Recall that the inverse of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ in $\operatorname{GL}\left(2, \mathbb{Z}_{p}\right)$ is the matrix $\left[\begin{array}{cc}d(a d-b c)^{-1} & -b(a d-b c)^{-1} \\ -c(a d-b c)^{-1} & a(a d-b c)^{-1}\end{array}\right]$ where all calculations are $\bmod p$ and $(a d-b c)^{-1}$ denotes the inverse of the determinant $\bmod p$.
Note that $\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right] \bmod 5=(1 \cdot 4-2 \cdot 1) \bmod 5=2 \bmod 5=2$. Thus, by part (a), the inverse of the determinant of the given matrix $\bmod 5$ is 3 .
Hence, the inverse of $\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right]$ in $\operatorname{GL}\left(2, \mathbb{Z}_{5}\right)$ is

$$
\left[\begin{array}{cc}
4 \cdot 3 \bmod 5 & -2 \cdot 3 \bmod 5 \\
-1 \cdot 3 \bmod 5 & 1 \cdot 3 \bmod 5
\end{array}\right]=\left[\begin{array}{cc}
12 \bmod 5 & -6 \bmod 5 \\
-3 \bmod 5 & 3 \bmod 5
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
2 & 3
\end{array}\right]
$$

4. For each, either prove that the given set is a group under the given operation or explain why the set is not a group under the operation.
(a) E, the set of even integers, under addition.

Solution: E is a group under addition. Indeed:

- If $x, y \in E$, then $x+y$ is even, so that $x+y \in E$. So + is a binary operation on E.
- Addition of numbers is associative.
- The identity is 0 : Since 0 is even, $0 \in E$. Furthermore, $x+0=0+x=x$ for all $x \in E$.
- The inverse of $a \in E$ is $-a$: If $a \in E$, then $-a$ is even, so $-a \in E$, and $a+(-a)=(-a)+a=0$.
(b) \mathbb{R}, the set of real numbers, under multiplication.

Solution: Since $1 \cdot x=x \cdot 1=x$ for all $x \in \mathbb{R}, 1$ would be the identity if \mathbb{R} were a group under multiplication. However, since $0 \cdot x=0$ for all $x \in \mathbb{R}$, there is no element $y \in \mathbb{R}$ for which $0 \cdot y$ is the identity. Hence, 0 does not have an inverse, and therefore \mathbb{R} is not a group under multiplication.

Remark: You should check that \mathbb{R}^{*}, the set of nonzero real numbers, is a group under multiplication.
(c) \mathbb{R}^{*}, the set of nonzero real numbers, under division.

Solution: \mathbb{R}^{*} is not a group under division since division is not associative. For example, $(8 \div 4) \div 2=1$, but $8 \div(4 \div 2)=4$.
(d) (Bonus!) \mathbb{R}^{3}, the set of 3-dimensional real vectors, under cross products.

Solution: A fundamental property of the cross product is that $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}. Thus, given two nonzero vectors \mathbf{v} and $\mathbf{w}, \mathbf{v} \times \mathbf{w}$ is neither equal to \mathbf{v} nor \mathbf{w}. Hence, the operation of cross product does not allow for the existence of an identity element. So this is not a group.

Another reason that \mathbb{R}^{3} is not a group under cross products is that the cross product is not associative (see any Calculus III textbook for an example).

