1.3.10. We first show that $W_{1}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n} \mid a_{1}+a_{2}+\cdots+a_{n}=0\right\}$ is a subspace of F^{n}. We need to show that $\overrightarrow{0} \in W_{1}$, and that W_{1} is closed under addition and scalar multiplication. Since $\overrightarrow{0}=(0,0, \ldots, 0) \in F^{n}$ and $0+0+\cdots+0=0$, it follows that $\overrightarrow{0} \in W_{1}$. Now, let $x, y \in W_{1}, c \in F$. Then $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, where $a_{1}+a_{2}+\cdots+a_{n}=0$ and $b_{1}+b_{2}+\cdots+b_{n}=0$. Now, $x+y=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$, and

$$
\begin{aligned}
\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\cdots+\left(a_{n}+b_{n}\right) & =\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\left(b_{1}+b_{2}+\cdots+b_{n}\right) \\
& =0+0 \\
& =0 .
\end{aligned}
$$

Thus, $x+y \in W_{1}$. Now, $c x=\left(c a_{1}, c a_{2}, \ldots, c a_{n}\right)$, and

$$
\begin{aligned}
c a_{1}+c a_{2}+\cdots+c a_{n} & =c\left(a_{1}+a_{2}+\cdots+a_{n}\right) \\
& =c 0 \\
& =0
\end{aligned}
$$

Thus, $c x \in W_{1}$. Therefore, W_{1} is a subspace of F^{n}.
Now, we show that $W_{2}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n} \mid a_{1}+a_{2}+\cdots+a_{n}=1\right\}$ is not a subspace of F^{n}. Since $\overrightarrow{0}=(0,0, \ldots, 0) \in F^{n}$ and $0+0+\cdots+0=0 \neq 1, \overrightarrow{0} \notin W_{2}$. Hence, W_{2} is not a subspace of F^{n}.
1.3.13. Let $V=\left\{f \in \mathcal{F}(S, F) \mid f\left(s_{0}\right)=0\right\}$. Recall that the function $z: S \rightarrow F$ defined by $z(s)=0$ for all $s \in S$ is the zero vector in $\mathcal{F}(S, F)$. Since $z\left(s_{0}\right)=0, z \in V$. Now, let $f, g \in V$. Then $(f+g)\left(s_{0}\right)=f\left(s_{0}\right)+g\left(s_{0}\right)=0+0=0$, and hence $f+g \in V$. Let $f \in V, c \in F$. Then $(c f)\left(s_{0}\right)=c\left(f\left(s_{0}\right)\right)=c 0=0$, and hence $c f \in V$. Since the zero vector in $\mathcal{F}(S, F)$ is in V, and V is closed under addition and scalar multiplication, V is a subspace of $\mathcal{F}(S, F)$.
1.4.7. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}$. Then,

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\left(a_{1}, 0, \ldots, 0\right)+\left(0, a_{2}, 0, \ldots, 0\right)+\cdots+\left(0, \ldots, 0, a_{n}\right) \\
& =a_{1}(1,0, \ldots, 0)+a_{2}(0,1,0, \ldots, 0)+\cdots+a_{n}(0, \ldots, 0,1) \\
& =a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n} \in \operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}
\end{aligned}
$$

Thus, any vector in F^{n} can be written as a linear combination of $e_{1}, e_{2}, \ldots, e_{n}$. Hence, $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ generates F^{n}.
1.4.12. (\Rightarrow) Suppose W is a subspace of V. We wish to show that $W=\operatorname{span}(W)$. Let $w \in W$. Then, since $w=1 \cdot w, w$ is a linear combination of vectors in W, and hence $w \in \operatorname{span}(W)$. So $W \subseteq \operatorname{span}(W)$. Now, let $v \in \operatorname{span}(W)$. Then

$$
v=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}
$$

for some scalars $a_{1}, a_{2}, \ldots, a_{n} \in F$ and vectors $w_{1}, w_{2}, \ldots, w_{n} \in W$. Since each $w_{i} \in W$ and W is closed under scalar multiplication, each $a_{i} w_{i} \in W$. Now, since W is closed under addition, $a_{1} w_{1}+a_{2} w_{2}+\cdots a_{n} w_{n} \in W$, and hence $v \in W$. It follows that $\operatorname{span}(W) \subseteq W$, and thus $W=\operatorname{span}(W)$.
(\Leftarrow) Now suppose \bar{W} is a subset of V, and that $W=\operatorname{span}(W)$. We wish to show that W is a subspace of V. By Theorem 1.5, $\operatorname{span}(W)$ is a subspace of V. Since $W=\operatorname{span}(W), W$ is a subspace of V.

