1.2.9. Proof of Corollary 1. Suppose there are two zero vectors, say $\overrightarrow{0}_{1}, \overrightarrow{0}_{2} \in V$ such that $x+\overrightarrow{0}_{1}=x$ and $x+\overrightarrow{0}_{2}=x$ for all $x \in V$. Since $x+\overrightarrow{0}_{1}=x=x+\overrightarrow{0}_{2}$ for all $x \in V$, Theorem 1.1 implies that $\overrightarrow{0}_{1}=\overrightarrow{0}_{2}$, and hence the vector $\overrightarrow{0}$ described in (VS $3)$ is unique.

Proof of Corollary 2. Let $x \in V$. Suppose there are two vectors, $y_{1}, y_{2} \in V$ such that $x+y_{1}=\overrightarrow{0}$ and $x+y_{2}=\overrightarrow{0}$. Since $x+y_{1}=\overrightarrow{0}=x+y_{2}$, Theorem 1.1 implies that $y_{1}=y_{2}$, and hence the vector y described in (VS 4) is unique.

Proof of Theorem 1.2(c). Let $a \in F$. Then, since $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}$ and $\overrightarrow{0}+a \overrightarrow{0}=a \overrightarrow{0}$ by (VS 3), we have

$$
\begin{aligned}
\overrightarrow{0}+a \overrightarrow{0} & =a \overrightarrow{0} \\
& =a(\overrightarrow{0}+\overrightarrow{0}) \\
& =a \overrightarrow{0}+a \overrightarrow{0} \text { by }(\operatorname{VS} 7)
\end{aligned}
$$

Thus, $\overrightarrow{0}+a \overrightarrow{0}=a \overrightarrow{0}+a \overrightarrow{0}$. By Theorem 1.1, $\overrightarrow{0}=a \overrightarrow{0}$.
1.2.12. Let $V=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f(-t)=f(t)$ for all $t \in \mathbb{R}\}$. To show that V is a vector space over \mathbb{R}, we must show that V is closed under addition and scalar multiplication, and that V satisfies the vector space properties (VS 1)-(VS 8).

Let $f, g \in V$. Then for all $t \in \mathbb{R}$,

$$
(f+g)(-t)=f(-t)+g(-t)=f(t)+g(t)=(f+g)(-t)
$$

and hence $f+g \in V$. Thus, V is closed under addition.
Now, let $c \in \mathbb{R}, f \in V$. Then for all $t \in \mathbb{R}$,

$$
(c f)(-t)=c(f(-t))=c(f(t))=(c f)(t)
$$

and hence $c f \in V$. Thus, V is closed under scalar multiplication. We now show that V satisfies (VS 1)-(VS 8)
(VS 1) Let $f, g \in V$. Then, since $(f+g)(t)=f(t)+g(t)=g(t)+f(t)=(g+f)(t)$ for all $t \in \mathbb{R}$, it follows that $f+g=g+f$.
(VS 2) Let $f, g, h \in V$. Then, since

$$
[(f+g)+h](t)=(f(t)+g(t))+h(t)=f(t)+(g(t)+h(t))=[f+(g+h)](t)
$$

for all $t \in \mathbb{R}$, it follows that $(f+g)+h=f+(g+h)$.
(VS 3) Define a function $z: \mathbb{R} \rightarrow \mathbb{R}$ by $z(t)=0$ for all $t \in \mathbb{R}$. Then, since $z(-t)=0=z(t)$ for all $t \in \mathbb{R}, t \in V$. Now, Let $f \in V$. Since $(f+z)(t)=f(t)+z(t)=f(t)$ for all $t \in \mathbb{R}$, it follows that $f+z=f$.
(VS 4) Let $f \in V$. Define a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(t)=-f(t)$ for all $t \in \mathbb{R}$. Then

$$
(f+g)(t)=f(t)-f(t)=0=z(t)
$$

for all $t \in \mathbb{R}$.
(VS 5) Let $f \in V$, then $1 f(t)=f(t)$ for all $t \in \mathbb{R}$, so $1 f=f$.
(VS 6) Let $a, b \in \mathbb{R}, f \in V$. Then

$$
(a b) f(t)=a(b f(t))
$$

for all $t \in \mathbb{R}$, hence $(a b) f=a(b f)$.
(VS 7) Let $a \in \mathbb{R}, f, g \in V$. Then

$$
[a(f+g)](t)=a[f(t)+g(t)]=a f(t)+b g(t)=(a f+b g)(t)
$$

for all $t \in \mathbb{R}$, so $a(f+g)=a f+a g$.
(VS 8) Let $a, b \in \mathbb{R}, f \in V$. Then

$$
[(a+b) f](t)=(a+b) f(t)=a f(t)+b f(t)=(a f+b f)(t)
$$

for all $t \in \mathbb{R}$, so $(a+b) f=a f+b f$.
1.2.13 No, V is not a vector space over \mathbb{R}. Indeed, consider $1,2 \in \mathbb{R},(3,4) \in V$. Then

$$
(1+2)(3,4)=3(3,4)=(3 \cdot 3,4)=(9,4)
$$

On the other hand,

$$
1(3,4)+2(3,4)=(1 \cdot 3,4)+(2 \cdot 3,4)=(3,4)+(6,4)=(9,4 \cdot 4)=(9,16)
$$

Thus, $(1+2)(3,4) \neq 1(3,4)+2(3,4)$, so (VS 8) fails.
Note: There are probably a few other properties which fail as well.
1.2.15 No, V is not a vector space over \mathbb{C}. Indeed, consider $i \in \mathbb{C},(1,1, \ldots, 1) \in V$. Note that

$$
i(1,1, \ldots, 1)=(i, i, \ldots, i) \notin V
$$

Thus, V is not closed under scalar multiplication, so V is not a vector space over \mathbb{C}.

