1.2.9. Proof of Corollary 1. Suppose there are two zero vectors, say $\vec{0}_1, \vec{0}_2 \in V$ such that $x + \vec{0}_1 = x$ and $x + \vec{0}_2 = x$ for all $x \in V$. Since $x + \vec{0}_1 = x = x + \vec{0}_2$ for all $x \in V$, Theorem 1.1 implies that $\vec{0}_1 = \vec{0}_2$, and hence the vector $\vec{0}$ described in (VS 3) is unique.

Proof of Corollary 2. Let $x \in V$. Suppose there are two vectors, $y_1, y_2 \in V$ such that $x + y_1 = \vec{0}$ and $x + y_2 = \vec{0}$. Since $x + y_1 = \vec{0} = x + y_2$, Theorem 1.1 implies that $y_1 = y_2$, and hence the vector y described in (VS 4) is unique.

Proof of Theorem 1.2(c). Let $a \in F$. Then, since $\vec{0} = \vec{0} + \vec{0}$ and $\vec{0} + a\vec{0} = a\vec{0}$ by (VS 3), we have $\vec{0} + a\vec{0} = a\vec{0}$

$$a\vec{0} = a\vec{0} = a(\vec{0} + \vec{0}) = a\vec{0} + a\vec{0}$$
by (VS 7)

Thus, $\vec{0} + a\vec{0} = a\vec{0} + a\vec{0}$. By Theorem 1.1, $\vec{0} = a\vec{0}$.

1.2.12. Let $V = \{f : \mathbb{R} \to \mathbb{R} \mid f(-t) = f(t) \text{ for all } t \in \mathbb{R}\}$. To show that V is a vector space over \mathbb{R} , we must show that V is closed under addition and scalar multiplication, and that V satisfies the vector space properties (VS 1)–(VS 8). Let $f, g \in V$. Then for all $t \in \mathbb{R}$,

$$(f+g)(-t) = f(-t) + g(-t) = f(t) + g(t) = (f+g)(-t),$$

and hence $f + g \in V$. Thus, V is closed under addition. Now, let $c \in \mathbb{R}$, $f \in V$. Then for all $t \in \mathbb{R}$,

$$(cf)(-t) = c(f(-t)) = c(f(t)) = (cf)(t),$$

and hence $cf \in V$. Thus, V is closed under scalar multiplication. We now show that V satisfies (VS 1)–(VS 8)

(VS 1) Let $f, g \in V$. Then, since (f+g)(t) = f(t) + g(t) = g(t) + f(t) = (g+f)(t) for all $t \in \mathbb{R}$, it follows that f+g = g+f.

(VS 2) Let $f, g, h \in V$. Then, since

$$[(f+g)+h](t) = (f(t)+g(t))+h(t) = f(t) + (g(t)+h(t)) = [f+(g+h)](t)$$

for all $t \in \mathbb{R}$, it follows that (f + g) + h = f + (g + h).

- (VS 3) Define a function $z : \mathbb{R} \to \mathbb{R}$ by z(t) = 0 for all $t \in \mathbb{R}$. Then, since z(-t) = 0 = z(t) for all $t \in \mathbb{R}$, $t \in V$. Now, Let $f \in V$. Since (f + z)(t) = f(t) + z(t) = f(t) for all $t \in \mathbb{R}$, it follows that f + z = f.
- (VS 4) Let $f \in V$. Define a function $g : \mathbb{R} \to \mathbb{R}$ by g(t) = -f(t) for all $t \in \mathbb{R}$. Then

$$(f+g)(t) = f(t) - f(t) = 0 = z(t)$$

for all $t \in \mathbb{R}$.

- (VS 5) Let $f \in V$, then 1f(t) = f(t) for all $t \in \mathbb{R}$, so 1f = f.
- (VS 6) Let $a, b \in \mathbb{R}, f \in V$. Then

$$(ab)f(t) = a(bf(t))$$

for all $t \in \mathbb{R}$, hence (ab)f = a(bf).

(VS 7) Let $a \in \mathbb{R}$, $f, g \in V$. Then

$$[a(f+g)](t) = a[f(t) + g(t)] = af(t) + bg(t) = (af + bg)(t)$$

for all $t \in \mathbb{R}$, so a(f+g) = af + ag.

(VS 8) Let $a, b \in \mathbb{R}, f \in V$. Then

$$(a+b)f](t) = (a+b)f(t) = af(t) + bf(t) = (af+bf)(t)$$

for all $t \in \mathbb{R}$, so (a+b)f = af + bf.

1.2.13 No, V is not a vector space over \mathbb{R} . Indeed, consider $1, 2 \in \mathbb{R}$, $(3, 4) \in V$. Then

$$(1+2)(3,4) = 3(3,4) = (3 \cdot 3,4) = (9,4)$$

On the other hand,

$$1(3,4) + 2(3,4) = (1 \cdot 3,4) + (2 \cdot 3,4) = (3,4) + (6,4) = (9,4 \cdot 4) = (9,16)$$

Thus, $(1+2)(3,4) \neq 1(3,4) + 2(3,4)$, so (VS 8) fails. Note: There are probably a few other properties which fail as well.

1.2.15 No, V is not a vector space over \mathbb{C} . Indeed, consider $i \in \mathbb{C}$, $(1, 1, \dots, 1) \in V$. Note that

 $i(1, 1, \dots, 1) = (i, i, \dots, i) \notin V.$

Thus, V is not closed under scalar multiplication, so V is not a vector space over \mathbb{C} .