Recall.

Theorem 2.4. Let V and W be vector spaces over the same field F, and suppose $T: V \rightarrow W$ is linear. Then T is one-to-one if and only if $\mathrm{N}(T)=\left\{\overrightarrow{0}_{V}\right\}$.

Theorem 2.5. Let V and W be finite-dimensional vector spaces with $\operatorname{dim}(V)=\operatorname{dim}(W)$, and let $T: V \rightarrow W$ be linear. Then the following are equivalent:
(a) T is one-to-one.
(b) T is onto.
(c) $\operatorname{rank}(T)=\operatorname{dim}(V)$.

Note. Theorem 2.5 does not hold for infinite-dimensional vector spaces. The theorem also fails for T not linear.
Example 12. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}\right) .
$$

Claim 1. T is linear.
Proof of Claim 1. Let $x, y \in \mathbb{R}^{2}, c \in \mathbb{R}$. Then $x=\left(a_{1}, a_{2}\right), y=\left(b_{1}, b_{2}\right)$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$. Hence,

$$
T(c x+y)=T\left(c a_{1}+b_{1}, c a_{2}+b_{2}\right)=\left(c a_{1}+b_{1}+c a_{2}+b_{2}, c a_{1}+b_{1}\right) .
$$

On the other hand,

$$
c T(x)+T(y)=c T\left(a_{1}, a_{2}\right)+T\left(b_{1}, b_{2}\right)=c\left(a_{1}+a_{2}, a_{1}\right)+\left(b_{1}+b_{2}, b_{1}\right)=\left(c a_{1}+c a_{2}+b_{1}+b_{2}, c a_{1}+b_{1}\right) .
$$

Thus, $T(c x+y)=c T(x)+T(y)$, so T is linear.
Claim 2. T is one-to-one.
Proof of Claim 2. Let $\left(a_{1}, a_{2}\right) \in \mathrm{N}(T)$. Then $T\left(a_{1}, a_{2}\right)=(0,0)$, and hence $\left(a_{1}+a_{2}, a_{1}\right)=(0,0)$, which implies $a_{1}+a_{2}=0$ and $a_{1}=0$. Solving this system yields $a_{1}=a_{2}=0$, and thus $\left(a_{1}, a_{2}\right)=(0,0)$. By Theorem 2.4, T is one-to-one.

Since T is linear and one-to-one, and since the domain and codomain of T have the same dimension, Theorem 2.5 im plies that T is onto.

The next theorem and its corollary illustrate the following remarkable fact about linear transformations: If you know the values of a linear transformation $T: V \rightarrow W$ on a basis of V, then you know the value $T(v)$ for any vector $v \in V$!

Theorem 2.6 Let V and W be vector spaces over F, and suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. Then for any vectors $w_{1}, w_{2}, \ldots, w_{n} \in W$, there exists exactly one linear transformation $T: V \rightarrow W$ such that $T\left(v_{1}\right)=w_{1}, T\left(v_{2}\right)=w_{2}, \ldots, T\left(v_{n}\right)=w_{n}$.

Main Idea of Proof. Let $x \in V$. Then, since $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, there exist unique scalars $a_{1}, a_{2}, \ldots, a_{n} \in F$ such that

$$
x=a_{1} v_{1}+a_{2} v_{2}+\cdots a_{n} v_{n} .
$$

Thus, we may define a function $T: V \rightarrow W$ by

$$
T(x)=a_{1} w_{1}+a_{2} w_{2}+\cdots a_{n} w_{n},
$$

where the $a_{1}, a_{2}, \ldots, a_{n} \in F$ are uniquely determined by x as above.
Exercise. Show that T is linear.
To show the uniqueness of T, suppose that $S: V \rightarrow W$ is linear and has $S\left(v_{1}\right)=w_{1}, S\left(v_{2}\right)=w_{2}, \ldots, S\left(v_{n}\right)=w_{n}$.

Then for any $x \in V$,

$$
\begin{aligned}
S(x) & =S\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} S\left(v_{1}\right)+a_{2} S\left(v_{2}\right)+\cdots+a_{n} S\left(v_{n}\right) \\
& =a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n} \\
& =T(x)
\end{aligned}
$$

Thus, $S=T$ and the uniqueness of T follows.
The proof of Theorem 2.6 illustrates that if two linear transformations from V to W have the same values on a basis for V, then those transformations must be identical. We state this as a corollary.

Corollary. Let V and W be vector spaces over F. If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $S, T: V \rightarrow W$ are two linear transformations such that $T\left(v_{1}\right)=S\left(v_{1}\right), T\left(v_{2}\right)=S\left(v_{2}\right), \ldots, T\left(v_{n}\right)=S\left(v_{n}\right)$, then $S=T$.

Example 14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(a_{1}, a_{2}\right)=\left(2 a_{2}-a_{1}, 3 a_{1}\right)$.
Exercise. Show that T is linear and $\{(1,2),(1,1)\}$ is a basis for \mathbb{R}^{2}.
Note that $T(1,2)=(3,3)$ and that $T(1,1)=(1,3)$.
Suppose that $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is any linear transformation with $S(1,2)=(3,3)$ and $S(1,1)=(1,3)$, then by the Corollary, S must be the same function as T !

