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Recall.

Theorem 2.4. Let V and W be vector spaces over the same field F , and suppose T : V → W is linear. Then T is
one-to-one if and only if N(T ) = {~0V }.

Theorem 2.5. Let V and W be finite-dimensional vector spaces with dim(V ) = dim(W ), and let T : V → W be lin-
ear. Then the following are equivalent:
(a) T is one-to-one.
(b) T is onto.
(c) rank(T ) = dim(V ).

Note. Theorem 2.5 does not hold for infinite-dimensional vector spaces. The theorem also fails for T not linear.

Example 12. Let T : R2 → R2 defined by
T (a1, a2) = (a1 + a2, a1).

Claim 1. T is linear.

Proof of Claim 1. Let x, y ∈ R2, c ∈ R. Then x = (a1, a2), y = (b1, b2) for some a1, a2, b1, b2 ∈ R. Hence,

T (cx + y) = T (ca1 + b1, ca2 + b2) = (ca1 + b1 + ca2 + b2, ca1 + b1).

On the other hand,

cT (x) + T (y) = cT (a1, a2) + T (b1, b2) = c(a1 + a2, a1) + (b1 + b2, b1) = (ca1 + ca2 + b1 + b2, ca1 + b1).

Thus, T (cx + y) = cT (x) + T (y), so T is linear.

Claim 2. T is one-to-one.

Proof of Claim 2. Let (a1, a2) ∈ N(T ). Then T (a1, a2) = (0, 0), and hence (a1 + a2, a1) = (0, 0), which implies a1 + a2 = 0
and a1 = 0. Solving this system yields a1 = a2 = 0, and thus (a1, a2) = (0, 0). By Theorem 2.4, T is one-to-one.

Since T is linear and one-to-one, and since the domain and codomain of T have the same dimension, Theorem 2.5 im-
plies that T is onto.

The next theorem and its corollary illustrate the following remarkable fact about linear transformations: If you know the
values of a linear transformation T : V →W on a basis of V , then you know the value T (v) for any vector v ∈ V !

Theorem 2.6 Let V and W be vector spaces over F , and suppose {v1, v2, . . . , vn} is a basis for V . Then for any vec-
tors w1, w2, . . . , wn ∈W , there exists exactly one linear transformation T : V →W such that
T (v1) = w1, T (v2) = w2, . . . , T (vn) = wn.

Main Idea of Proof. Let x ∈ V . Then, since {v1, v2, . . . , vn} is a basis for V , there exist unique scalars a1, a2, . . . , an ∈ F
such that

x = a1v1 + a2v2 + · · · anvn.

Thus, we may define a function T : V →W by

T (x) = a1w1 + a2w2 + · · · anwn,

where the a1, a2, . . . , an ∈ F are uniquely determined by x as above.

Exercise. Show that T is linear.

To show the uniqueness of T , suppose that S : V → W is linear and has S(v1) = w1, S(v2) = w2, . . . , S(vn) = wn.



Then for any x ∈ V ,

S(x) = S(a1v1 + a2v2 + · · ·+ anvn)

= a1S(v1) + a2S(v2) + · · ·+ anS(vn)

= a1w1 + a2w2 + · · ·+ anwn

= T (x).

Thus, S = T and the uniqueness of T follows.

The proof of Theorem 2.6 illustrates that if two linear transformations from V to W have the same values on a basis for V ,
then those transformations must be identical. We state this as a corollary.

Corollary. Let V and W be vector spaces over F . If {v1, v2, . . . , vn} is a basis for V and S, T : V → W are two lin-
ear transformations such that T (v1) = S(v1), T (v2) = S(v2), . . . , T (vn) = S(vn), then S = T .

Example 14. Let T : R2 → R2 defined by T (a1, a2) = (2a2 − a1, 3a1).

Exercise. Show that T is linear and {(1, 2), (1, 1)} is a basis for R2.

Note that T (1, 2) = (3, 3) and that T (1, 1) = (1, 3).

Suppose that S : R2 → R2 is any linear transformation with S(1, 2) = (3, 3) and S(1, 1) = (1, 3), then by the Corol-
lary, S must be the same function as T !


