Definition. Let F be a field (In our class, $F = \mathbb{R}$ or $F = \mathbb{C}$). The elements of F are called *scalars*. A vector space over F is a set V (the elements of V are called *vectors*), together with two operations (called *addition* and *scalar multiplication* such that

- for all vectors $x, y \in V$, there is a unique vector $x + y \in V$ (called the sum of x and y), and
- for all vectors $x \in V$ and for all scalars $a \in F$, there is a unique vector $ax \in V$ (called the *product* of a and x),

and such that the following eight properties hold.

(VS 1) For all vectors $x, y \in V$, x + y = y + x. (Vector addition is commutative.)

- (VS 2) For all vectors $x, y, z \in V$, (x + y) + z = x + (y + z). (Vector addition is associative.)
- (VS 3) There exists a vector $\vec{0} \in V$ (called the zero vector) such that $x + \vec{0} = x$ for all vectors $x \in V$.
- (VS 4) For all vectors $x \in V$, there exists a vector $y \in V$ such that $x + y = \vec{0}$. (The vector y is often denoted -x.)
- (VS 5) For all vectors $x \in V$, 1x = x (where $1 \in F$ is the scalar 1).
- (VS 6) For all scalars $a, b \in F$ and all vectors $x \in V$, (ab)x = a(bx).
- (VS 7) For all scalars $a \in F$ and all vectors $x, y \in V$, a(x+y) = ax + ay.
- (VS 8) For all scalars $a, b \in F$ and all vectors $x \in V$, (a + b)x = ax + bx.