Definition. Let F be a field (In our class, $F=\mathbb{R}$ or $F=\mathbb{C}$). The elements of F are called scalars. A vector space over F is a set V (the elements of V are called vectors), together with two operations (called addition and scalar multiplication such that

- for all vectors $x, y \in V$, there is a unique vector $x+y \in V$ (called the sum of x and y), and
- for all vectors $x \in V$ and for all scalars $a \in F$, there is a unique vector $a x \in V$ (called the product of a and x), and such that the following eight properties hold.
(VS 1) For all vectors $x, y \in V, x+y=y+x$. (Vector addition is commutative.)
(VS 2) For all vectors $x, y, z \in V,(x+y)+z=x+(y+z)$. (Vector addition is associative.)
(VS 3) There exists a vector $\overrightarrow{0} \in V$ (called the zero vector) such that $x+\overrightarrow{0}=x$ for all vectors $x \in V$.
(VS 4) For all vectors $x \in V$, there exists a vector $y \in V$ such that $x+y=\overrightarrow{0}$. (The vector y is often denoted $-x$.)
(VS 5) For all vectors $x \in V, 1 x=x$ (where $1 \in F$ is the scalar 1).
(VS 6) For all scalars $a, b \in F$ and all vectors $x \in V,(a b) x=a(b x)$.
(VS 7) For all scalars $a \in F$ and all vectors $x, y \in V, a(x+y)=a x+a y$.
(VS 8) For all scalars $a, b \in F$ and all vectors $x \in V,(a+b) x=a x+b x$.

