\qquad

Show all work clearly. Circle your final answers. Simplify as much as possible.

1. The position y (in feet) of a particle at time t (in seconds) is given by the formula

$$
y=t^{3}-3 t+4
$$

(a) Find the average speed of the particle between $t=1$ and $t=2$ seconds. Be sure to include appropriate units.
(b) Find and simplify a formula for the average speed of the particle on the time interval $[1,1+h], h \neq 0$. Leave your answer in terms of h.
(c) Use your formula from part (b) to compute the average speed of the particle on the time intervals $[1,1.1]$, and $[1,1.01]$, and $[1,1.001]$. Round your answers to at least 3 decimal places.
(d) Using your data from part (c), what seems to be the instantaneous speed of the particle at time $t=1$ second?
2. Sketch a graph of each of the following functions and explain why the limit does not exist.
(a) $f(x)=\frac{x}{|x|} ; \lim _{x \rightarrow 0} f(x)$
(b) $g(x)=\frac{1}{x-1} ; \lim _{x \rightarrow 1} g(x)$
3. Find and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}, h \neq 0$ for the function $f(x)=\frac{1}{x}$. What happens to the difference quotient as $h \rightarrow 0$?
4. Evaluate the following limits.
(a) $\lim _{x \rightarrow-1} \frac{x^{3}+3 x+2}{x^{2}-x-2}$
(b) $\lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{x+1}$ (Hint: Rationalize the numerator.)
5. Use the Sandwich Theorem to show that $\lim _{x \rightarrow 0} x^{2} \cos (20 \pi x)=0$. (Hint: Find two functions f and g with $f(x) \leq x^{2} \cos (20 \pi x) \leq g(x)$ and $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$.)

