
CI/CD

Aryaman Chhikara
Gungun Gungun
Thomas Johnson
Stephen Killough

Continuous Integration and Continuous Delivery/Deployment

 What is CI / CD CI - stands for continuous integration

It is the practice of automatically and
frequently integrating code changes into
a repository.

CD - Stands for continuous delivery

It is the process which refers to the
integration testing and delivery of code
changes.

 CI (Continuous
Integration)

CI detects integration issues early on
ensuring that all the developers code is
seamlessly integrated. It does that by
automating the build and test processes.

CI helps identify conflicts bugs and other
issues that occur during development,
which enhances the overall collaboration
among team members.

Some Key
component of CI

Version Control System (VCS):

● Centralized (e.g., SVN) or Distributed (e.g., Git)
● Enables tracking changes, managing codebase, and

collaboration among developers.

Automated Build:

● Automatic compilation of code into executable or
deployable artifacts.

● Ensures consistency and repeatability in the build
process.

Automated Testing:

● Includes unit tests, integration tests, and other forms
of automated testing.

● Validates code changes and prevents regressions.

Continuous Integration Server:

● Manages the CI process, including triggering builds,
running tests, and reporting results.

● Examples include Jenkins, Travis CI, CircleCI.

CD (Continuous
Delivery) Continuous delivery (CD) takes the concept of CI

further by enabling the seamless and rapid
deployment of code changes to production
environments. CD automates all the steps
involved in releasing software, including building,
packaging, and deploying applications.

It ensures that software is always in a releasable
state, allowing organizations to deliver value to
end-users promptly

Some Key
components of CD

Continuous Monitoring and Feedback:

● Monitors deployed applications and infrastructure
in real-time.

● Collects metrics, logs, and alerts to provide
feedback on application health and performance.

Rollback Mechanism:

● Provides the ability to rollback deployments in
case of failures or issues.

● Ensures quick recovery and minimal downtime in
case of deployment failures.

Release Management:

● Manages the release process, including
scheduling, versioning, and tracking of
deployments.

● Facilitates coordination between development,
operations, and other stakeholders.

Some more key
components of CD

Compliance and Security:

● Implements security measures and compliance
checks throughout the deployment pipeline.

● Ensures that deployments meet regulatory
requirements and security standards.

Infrastructure as Code (IaC):

● Treats infrastructure as code, enabling
automation and versioning of infrastructure
configurations.

● Allows for reproducible and consistent
infrastructure deployments.

Integration with CI:

● Integrates seamlessly with the Continuous
Integration (CI) process to automate the
end-to-end software delivery pipeline.

● Ensures that changes validated in CI are
seamlessly deployed to production environments.

Scope for CI and CD

CI focuses on integrating code changes
into a shared repository frequently,
usually several times a day. It
emphasizes automating the build and
test phases.

CD extends CI by automating the entire
software release process. It
encompasses deploying code changes
to production environments after
passing through the CI pipeline

Objectives of CI and CD

The primary goal of CI is to catch
integration errors quickly by integrating
code changes into the main branch and
running automated tests. It ensures that
the codebase remains in a deployable
state at all times.

CD aims to automate the deployment
process further beyond CI, enabling
frequent, reliable, and low-risk releases
to production environments. It
emphasizes delivering changes to
end-users rapidly and continuously.

Deployment Strategies

CI does not involve deploying code changes
to production environments automatically. It
focuses on validating code changes through
automated testing.

CD encompasses various deployment
strategies, including continuous delivery and
continuous deployment. Continuous delivery
involves deploying code changes to staging
or pre-production environments for further
testing and validation before manual
approval for production deployment.
Continuous deployment automates the
deployment of code changes to production
environments after passing through the
CI/CD pipeline without manual intervention.

Why would we want CI/CD?

Faster time to
market

CI/CD automates the software delivery
pipeline, enabling rapid and frequent releases
of new features, enhancements, and bug fixes.
This agility allows organizations to respond
quickly to market demands and stay ahead of
competitors.

Improved Software
quality

By automating build, testing, and
deployment processes, CI/CD reduces
the likelihood of introducing bugs or
errors into the codebase. Early detection
of issues through automated testing
ensures higher overall software quality.

Benefits of CI/CD

Accelerated
Delivery

● Rapid feedback loops: CI/CD enables
developers to receive immediate
feedback on code changes, allowing
them to identify and address issues early
in the development process, thereby
accelerating the delivery of features and
updates.

● Reduced time-to-market: By automating
the build, test, and deployment
processes, CI/CD shortens the
development lifecycle, enabling
organizations to release new features and
updates to customers faster, gaining a
competitive edge in the market.

Enhanced Quality ● Continuous testing and validation: CI/CD
pipelines automate the execution of
various tests, including unit tests,
integration tests, and end-to-end tests,
ensuring that code changes meet quality
standards and functional requirements.

● Early bug detection and resolution: With
CI/CD, bugs and defects are detected
early in the development cycle, making
them easier and less costly to fix,
resulting in higher-quality software
products and improved customer
satisfaction.

Improved
Collaboration

● Seamless integration among teams:
CI/CD promotes collaboration and
teamwork by providing a centralized
platform where developers, testers, and
other stakeholders can collaborate on
code changes, share insights, and
coordinate efforts effectively.

● Enhanced communication and
transparency: CI/CD pipelines offer
visibility into the development process,
allowing team members to track progress,
monitor changes, and communicate
effectively, leading to improved
transparency and alignment across the
organization.

Increased
Productivity

● Automation of repetitive tasks: CI/CD
automates time-consuming and repetitive
tasks such as code compilation, testing,
and deployment, freeing up developers to
focus on more value-added activities,
such as innovation and problem-solving.

● Focus on value-added activities: By
automating routine tasks, CI/CD enables
developers to spend more time on
creative and strategic activities, such as
designing new features, improving user
experience, and addressing customer
feedback, thereby increasing overall
productivity.

Higher Customer
Satisfaction

● Rapid feature delivery: CI/CD allows
organizations to deliver new features and
updates to customers quickly and
frequently, addressing their needs and
preferences in a timely manner, leading to
higher levels of customer satisfaction and
loyalty.

● Reduced downtime and bugs: With
CI/CD, software updates are deployed
incrementally and with minimal disruption,
reducing the risk of downtime and
minimizing the occurrence of bugs and
performance issues, ensuring a seamless
and reliable user experience.

Competitive
Advantage

● By embracing CI/CD practices,
organizations can differentiate
themselves in the market by delivering
innovative features and updates to users
faster and with higher quality.

● The ability to respond quickly to customer
feedback and market changes gives
companies a competitive edge and
positions them as leaders in their
industry.

Consistency Across
Environments

● CI/CD ensures that development, testing,
staging, and production environments
remain consistent and in sync.

● By using infrastructure as code and
automated deployment pipelines,
organizations can replicate environments
easily, reducing configuration drift and
minimizing discrepancies between
different stages of the deployment
pipeline.

Principles of CI/CD

Automated Testing ● Automated tests (unit tests, integration
tests, etc.) are an integral part of the CI
process.

● Tests are executed automatically as part
of the build process to ensure that
changes haven't introduced any
regressions or bugs.

● Testing should cover different levels (unit,
integration, end-to-end) to provide
comprehensive code coverage.

Infrastructure as
Code (IaC)

● CI/CD pipelines often rely on
Infrastructure as Code principles, where
infrastructure (servers, databases,
networking, etc.) is defined in code and
managed programmatically.

● Tools like Terraform, CloudFormation, or
Ansible are used to define and provision
infrastructure, ensuring consistency and
reproducibility across different
environments.

Version Control ● Version control systems (such as Git) are
at the core of CI/CD practices, enabling
developers to collaborate effectively and
track changes to the codebase over time.

● All code changes, configurations, and
scripts used in the CI/CD pipeline should
be version-controlled to maintain a
reliable history and facilitate collaboration.

Feedback Loop ● CI/CD emphasizes quick feedback loops,
providing developers with immediate
feedback on the quality and correctness
of their code.

● This feedback loop helps identify and
address issues early in the development
process, reducing the time and effort
required to fix them.

Visibility and
Monitoring ● CI/CD pipelines should incorporate robust

monitoring and logging mechanisms to
provide visibility into the health and
performance of the software delivery
process.

● Monitoring helps identify bottlenecks,
failures, and performance issues in the
pipeline, allowing teams to continuously
optimize and improve their workflows.

Security and
Compliance ● Security and compliance considerations

should be integrated into every stage of
the CI/CD pipeline to ensure that software
releases meet regulatory requirements
and security standards.

● Automated security scans, vulnerability
assessments, and compliance checks
should be part of the deployment pipeline
to identify and address potential risks
early in the development process.

Environment Parity
● Ensuring parity between development,

testing, staging, and production
environments is crucial for reliable and
predictable deployments.

● By maintaining consistent configurations,
dependencies, and infrastructure across
environments, teams can minimize the
risk of issues arising due to
environmental differences.

Thomas’s Section

Continuous
Delivery

Once code has gone through the CI process, the
Continuous Delivery process ensures that it’s
packaged correctly and ready to be deployed to an
environment.

Continuous Delivery can get changes into a testing
environment in a safe, quick, and sustainable way.

Continuous Delivery practices develop code in such
a way that it can be deployed at any time.

- Production-like test environments
- Requires human intervention to deploy

Continuous
Delivery
cont.

Benefits:

- Lower Risk - makes delivery painless by
using repeatable patterns

- Faster - integration and delivery can take a
significant amount of time if done manually

- Higher Quality - automated and continuous
delivery means more time available for fixes
and improvements, as well as a higher
likelihood of finding errors

- Lower Costs - less time and money spent on
fixes

Continuous
Deployment

Continuous Deployment allows automatic
deployment of applications and changes. Once the
CI/CD process determines that the criteria have
been met, code can be deployed to the production
environment.

Continuous Deployment takes continuous delivery
a step further by trusting the developers and tests
enough such that it can deploy automatically.

- Developers and tests trusted
- Once tests pass, deployment automated

without human approval

Natural outcome of Continuous Delivery. Eventually,
human approval slows the process down.

Ex: Japan’s AN/TPY-2 Radar

Continuous
Deployment Tools

Version Control - track revisions and aid
collaboration

Code Review - test the current source code

Continuous Integration - automate integration and
testing at least once per day

Configuration Management - ensure software and
hardware maintain a consistent state

Release Automation - automate activities for
continuous deployment

Infrastructure Monitoring - impact of changes to
performance of system

Continuous
Deployment
Cont.

Continuous Integration is a necessary part of
Continuous Deployment.

Developers often work off a copy of a master
branch. The longer that developers work
independently of each other, the greater the risk of
failure.

Continuous Integration ensures that code gets
tested and integrated at least once per day, so that
this risk is mitigated.

The Role of
Automated Testing

As the creator, you may not know the impact of a
change, or forget to test some aspect of the
system. Testing is also time-consuming and costly.

Extreme Programming Explained: Embrace Change,
Kent Beck, Cynthia Andres, 1999

- Cornerstones of modern software
development

- Rapid feedback loops
- Safe and easy ways to make change
- Happy and satisfied team

Automated testing plays a key role for all three.

Automated Testing
Cont.

Rapid Feedback Loops

- Testing is about feedback. The test should
return results quickly. The faster the results
come, the sooner you can progress, and the
sooner you know if your tests work as
expected.

Safe and easy way to make changes

- Automated testing means a repeatable and
easy testing process. Making changes easy
means quicker and more reliable test results.

Happy and satisfied team

- Automated testing makes testing much
easier and more reliable. Teams can be
confident in the results and use less time
testing.

Automated Testing
Mistakes

semaphorci.com - Automated Testing

Testing slows progress

- “Give me six hours to chop down a tree and I
will spend the first four sharpening the axe.”

- Abraham Lincoln
- Forces the developers to think about the

problem and develop a “safety net”
- Allows for quick changes once safety net is

in place

Testing is only for finding bugs

- Also makes bugs easier to detect and fix
(safety net)

We must achieve 100% coverage

- Coverage only means that a test puts a
portion of code under scrutiny. Instead, we
should compromise between coverage and
quality.

Writing an
Automated Test

The first tests should have enough code to give
some value, but little enough to be approachable.

End-to-end tests that emulate user behavior

Use tools, but don’t limit to only using tools.

Write your test with automation in mind.

Writing an
Automated Test
Cont.

semaphorci.com - The Six Principles of
Test Automation

Improve Quality - Don’t let bad code pass

Reduce Risk - minimize risk of failure; find errors
while not giving false positives

Understand the Code - have an expectation for the
code’s behavior

Easy to Write - Impractical to test your test

Easy to Run - Should be able to start automatically

Minimal Maintenance - Don’t tie so closely to code
that a change will break the test

Stephen’s Section

Introduction to
CI/CD Pipelines:

CI/CD pipelines are automated
processes in software development
that enable code changes made by
developers to be automatically
integrated, tested, and prepared for
release to production

Automate the integration, testing, and
deployment processes.

Facilitate a seamless flow from
development to deployment.

Reduce manual intervention, improving
efficiency.

Ensure software quality through
automated testing.

Benefits of CI/CD
Pipelines

Discuss the advantages of implementing
CI/CD pipelines, such as faster delivery
times, improved software quality, and
enhanced developer productivity.

Faster Delivery Times: Automated
processes lead to quicker deployments.

Improved Software Quality: Early bug
detection and consistent testing
environments.

Enhanced Developer Productivity: Focus
on high-value tasks with reduced
integration hassles.

Key Components of
a CI/CD Pipeline

Break down the pipeline into its essential
components, including source control,
build automation, testing, and deployment

Source Control: Foundation for
collaboration and code management.

Build Automation: Compiles code,
ensuring consistency and early problem
detection.

Automated Testing: Identifies defects
early, improving quality.

Deployment: Automates release
processes, enhancing speed and
reliability

The Role of
Automated Testing

Discuss how automated testing is
integrated into CI/CD pipelines and its
impact on software quality

Triggered automatically by code commits.

Covers unit, integration, functional, and
performance tests.

Provides real-time feedback to
developers.

Ensures only validated changes are
deployed.

Overview of CI/CD
Tools

Introduce the tools that facilitate CI/CD
processes, including Jenkins, GitLab
CI/CD, and GitHub Actions.

Jenkins: Extensive plugin library, supports
complex workflows.

GitLab CI/CD: Integrated environment,
configuration as code.

GitHub Actions: Deep integration with
GitHub, marketplace for shared
workflows.

Jenkins: An
In-depth Look

Provide an overview of Jenkins, its
ecosystem, and how it supports CI/CD
pipelines.

Extensive collection of plugins for broad
capability extension.

"Jenkins Pipeline" for continuous delivery
as code.

"Jenkinsfile" for pipeline version control.

GitLab CI/CD and
GitHub Actions

Compare these tools, focusing on their
integration with source code repositories
and built-in CI/CD capabilities

GitLab CI/CD: Integrated CI/CD with Auto
DevOps, visibility, and built-in security.

GitHub Actions: Workflow automation
within GitHub, supports a marketplace of
actions.

Both emphasize simplicity and direct
repository integration.

Emerging CI/CD
Tools and
Technologies

Highlight new and emerging tools in the
CI/CD landscape, discussing their unique
features or approaches to automation.

CircleCI: Known for fast execution times
and "Orbs".

Travis CI: Simplicity in setup, integrates
seamlessly with GitHub.

Docker/Kubernetes: Enhances CI/CD with
containerization and orchestration.

Tekton/Argo CD: Kubernetes-native CI/CD
solutions.

Choosing the Right
CI/CD Tool

Offer criteria or considerations for
selecting a CI/CD tool, such as scalability,
community support, and integration
capabilities

Consider scalability, community support,
and integration capabilities.

Ensure flexibility for pipeline configuration
and workflow customization.

Prioritize security features and access
control.

Evaluate ease of use, setup, and cost
implications.

Best Practices and
Future Trends in
CI/CD

Summarize best practices for
implementing CI/CD pipelines and tools,
and speculate on future trends in CI/CD
technologies

Automate fully, maintain code quality,
encourage small frequent commits.

Future trends include AI/ML integration,
serverless CI/CD pipelines, infrastructure
as code, shift-left security, and the rise of
GitOps.

References

https://www.redhat.com/en/topics/devops/what-is-ci-cd

https://zeet.co/blog/ci-cd-pipeline-examples

https://continuousdelivery.com/

https://www.redhat.com/en/topics/devops/what-is-ci-cd#:~:text=CI%2FCD%2C%20which%20stands%20for,a%20share
d%20source%20code%20repository

https://about.gitlab.com/topics/ci-cd/

https://www.ibm.com/topics/continuous-deployment#:~:text=Continuous%20deployment%20is%20a%20strategy,direc
tly%20to%20the%20software's%20users

https://semaphoreci.com/blog/automated-testing-cicd

https://semaphoreci.com/blog/test-automation

https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://zeet.co/blog/ci-cd-pipeline-examples
https://continuousdelivery.com/
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:~:text=CI%2FCD%2C%20which%20stands%20for,a%20shared%20source%20code%20repository
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:~:text=CI%2FCD%2C%20which%20stands%20for,a%20shared%20source%20code%20repository
https://about.gitlab.com/topics/ci-cd/
https://www.ibm.com/topics/continuous-deployment#:~:text=Continuous%20deployment%20is%20a%20strategy,directly%20to%20the%20software's%20users
https://www.ibm.com/topics/continuous-deployment#:~:text=Continuous%20deployment%20is%20a%20strategy,directly%20to%20the%20software's%20users
https://semaphoreci.com/blog/automated-testing-cicd
https://semaphoreci.com/blog/test-automation

https://www.jenkins.io/

https://about.gitlab.com/topics/ci-cd/

https://github.com/features/actions

https://circleci.com/

https://www.travis-ci.com/

https://www.docker.com/products/kubernetes/

https://www.jenkins.io/
https://about.gitlab.com/topics/ci-cd/
https://github.com/features/actions
https://circleci.com/
https://www.travis-ci.com/
https://www.docker.com/products/kubernetes/

